HiFlow³ - A Finite Element Software

Teresa Beck, Simon Gawlok and HiFlow³ team
HiFlow³-Finite Element Software

Introduction

– parallel finite element software

– developed by EMCL (Engineering Mathematics and Computing Lab) of Prof. Heuveline, IWR, University of Heidelberg

– 12 years of development and experience

– open source: LGPLv3-License
HiFlow³-Finite Element Software

A modular approach

Mesh
- 2D: triangles, quads
- 3D: tetrahedrons, hexahedrons
- unstructured meshes
- h-refinement

Finite Element Spaces
- Lagrange Finite Elements
- arbitrary polynomial degree
- p-refinement

Linear Algebra toolbox
- matrix and vector structures
- linear and nonlinear solvers
- preconditioners

User defined application
- PDE
- assembly of matrices and vectors
- postprocessing
- visualization
HiFlow³-Finite Element Software

Interfaces and Backends

- **interfaces** to various toolkits:
 METIS, MUMPS, ATLAS, MKL BLAS, HDF5, CLAPLACK,
 MKL LAPACK, CUDA, OpenCL, GaussQ, ILU++,
 OpenMP, UMFPACK

- **backends** for matrix and vector node-level
 implementation: CUDA, OpenMP, naive, OpenCL, ...

- **parallelism** introduced on three levels:
 - distributed memory parallelization: MPI
 - shared memory parallelization: OpenMP
 - accelerators: CUDA, OpenCL
Performance and Scalability

Nozzle benchmark:
- Incompressible Navier-Stokes equations
- Reynolds number approx. 500
- Discretization with P2/P1 elements
- about 4 Mio. unknowns
- Block preconditioning with ILU++
- GMRES iterative linear solver
- Newton method
Performance and Scalability
Scaling of Nozzle benchmark on JUROPA, FZ Jülich

![Graph showing the scaling of the Nozzle benchmark on JUROPA, FZ Jülich.](image)
HiFlow³-Finite Element Software

Performance and Scalability
Scaling of Nozzle benchmark on JUQUEEN, FZ Jülich
HiFlow³-Finite Element Software

Fields of Application
amongst others:

- Environmental Sciences
 - Baroclinic Wavetank
- Medical Engineering
 - Aortic Blood Flow
- Biochemistry
 - Chromatographic System
- Environmental Sciences
 - Tropical Cyclones
Goal Oriented Adaptivity

For Tropical Cyclones

DFG MetStröm

Goal
- prediction of storm tracks and intensity

Challenges for the modeling
- multi-scale problem
- Which regions and which processes are relevant?

Approach: goal-oriented adaptivity in space and time

HiFlow³-Finite Element Software

Goal Oriented Adaptivity
For Tropical Cyclones

Implementation highlights with HiFlow³:
- finite element discretizations in space/time (Q2-Q1/cGP(1))
- h-/Δt-adaptivity in space/time
- adaptivity guided by goal-oriented error estimators
 - computation of dual solution
 - higher-order interpolation
 - mesh adaptation strategy
- preconditioning with ILU++
- simulations with up to 10 Mio. unknowns in 3D

HiFlow³-Finite Element Software

Release 1.4

– available from 11/07/2014
– maintenance release – streamlined and standardized version
– new features
 – generic interfaces for Matrices and Vectors
 – additional postprocessing abilities
 – support for geometric search
 – evaluation of solution at arbitrary points
 – extended support for single precision
– two new tutorials
– improved examples
HiFlow³-Finite Element Software

Outlook

Release 1.5

– available from autumn 2014
– **new parallel I/O concept**
 – based on **XDMF** (eXtensible Data Model and Format) and **HDF5** (hierarchical data format)
 – enables using the same parallel I/O data format for both visualization and checkpointing
– **new module Stochastic FEM**
 – model uncertainties in physical problems
 – support of specialized solvers and preconditioners

Stay up to date and subscribe to our Newsletter!
HiFlow³-Finite Element Software

Thanks for your attention!